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1: Introduction

Composite systems are multi-agent systems. They
comprise several agents interacting so as to achieve some
system-wide goals or functional requirements. In our
experience, composite systems are numerous - it is more
difficult to think of systems that are not composite than
those that are. Thus we see broad applicability for a
composite system design viewpoint in the early stages of
requirements elicitation and specification design.

We are attempting to develop knowledge-based
assistance for engineering composite systems. In
particular, we wish to support the production of formal,
operational specifications of composite systems from
formal statements of requirements. We would like
automated tools to help the analyst to analyze a set of
requirements and identify what agents are necessary, what
capabilities each agent must have to fulfill its role in the
overall system, the inter-agent protocol that allows agents
to cooperate, and finally, the interface each agent must
have to be an active participant in the system.

The composite system design approach has been
proposed by Feather to address this problem [6]. The
essence of his composite system design approach is to do
the design (or redesign) of composite systems by beginning
from a description of the properties desired of the system as
a whole, and then deriving the behaviors of, and
interactions between, the agents so that their combination
will achieve the desired system properties. The final
system may include pre-existing agents whose properties
cannot be changed, and newly created agents defined just
for the task at hand.

Typical systems will be a mixture of human, software,
and hardware agents. Taking the standard elevator problem
as an cxample, we might identify elevator controller
agents, passenger agents, maintenance agents, etc. In
essence, CSD allows us to explore the entire space of
designs that might satisfy the system requirements.
Choosing among alternative implementations of these
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designs will lead us to fully automated elevators, fully
manual elevators, and many specifications in between.

In this section we outline how our composite system
design work fits with other requirements and specification
activity. We then summarize our approach and how we are
pursuing its study, and highlight the key questions that we
are attempting to answer. The sections that follow explore
these issues in more detail:

In section 2 we show how we model the composite
system design process as a search through a space of
possible designs.

In section 3 we focus on the construction of the search
space, arguing that a relatively small number of domain-
independent methods suffice to generate an interesting
class of designs.

In section 4 we focus on the evaluation of alternative
designs, and show how this is related to the additional
problems inherent in evolving existing systems.

In section 5 we summarize our findings, and outline the
areas we feel to be the most worthy of immediate study.

1.1: Relationship to other design activity

Most work on requirements and specification addresses
the design of components in relative isolation from the
design and/or purpose of the environment of which they
are but a part. In other words, when an component (an
embedded software system, say) is to be described and
thereafter constructed, its environment is typically taken as
immutable, and is described only to the minimal extent that
is necessary to delineate how the component must behave,
Many of the examples used to illustrate requirements and
specification work exhibit this characteristic, e.g., the
problem set in [11] included: :

» Problem #1, LIBRARY ([13]) - a description of the
required transactions of a simple book library, but
lacking a description of the broader purpose of the
system, the sharing of a resource among multiple
users;



» Problem #4, LIFT - a description of the required
activity of a lift (elevator) system in response to but-
ton presses, but again lacking a description of the
broader purpose, in this case to assist the transporta-
tion of people in a multi-story building to their
desired destination floors.

We believe that problem specifications like the two
above place unnecessary limitations on the implementer. In
reaction to this, our study of composite system design
emphasizes the elicitation and study of the larger context of
each component or agent. Thus we see the end-product of
our design process as the starting point for “traditional”
requirements and specification work. We believe the
following advantages accrue from this broader scope of
consideration;

* Traceability to system-wide goals. The system
agents and communications among those agents that
result from this design process can be traced to the
initial system-wide goals, and the design choices
made. This provides a formal rationale for the
design. In contrast, a description of only the end
product of composite system design, namely the
behaviors of the individual agents, might not clearly
reflect the underlying rationale.

* Thorough exploration of the space of design alterna-
tives. By beginning with the system-wide goals as
the objective of the design process, we do not inad-
vertently pre-commit to any particular decomposi-
tion of those goals among the agents. This
maximizes the likelihood that we do not overlook
alternative, perhaps superior, solutions.

*  Basis for redesign. In the event of the need to make
or respond to some change (either to the system-
wide goals, to the capabilities of, or communication
between, agents of the system, or to the relative cost
of design alternatives), the record of the design pro-
cess will serve as the basis on which to do such rede-
sign. Without such a record, it would be hard to
redesign the system in a principled manner.

We believe this last point is particularly crucial. As an
example, consider developing the requirements for the
elevator controller above. If we treat the controller in
isolation from its environment, we cannot formally explain
the need for any feature of the elevator, such as the
presence of doors or the use of a demand-driven service
protocol. Without such rationale, it is difficult to formally
prove we can eliminate a given button as an economy
measure, or that we should use it in a new elevator
installation in another building. Finally, ignoring the high-
level goals of passengers and other agents in the elevator
system makes it difficult to describe or evaluate innovative
designs which new information technology may make
feasible, such as an elevator which predicted the arrival

floor of passengers, or one which took voice reservations
over a cellular phone. Because of these limitations, we
argue that specification approaches which currently take a
single-agent, stand-alone view to what are, in reality,
composite systems, can benefit from the broader
perspective of CSD.

1.2: Research methodology

Our research methodology for studying composite
system design has been as follows:

1. Propose a method for composite system design, i. e.,

a method whose end-product would suffice as the
starting point for “traditional” requirements and
specification work. This paper summarizes our
current method in section 1.3,

2. Identify the crucial research questions to ask. We
identify two we feel are most important below.

3. Exercise our approach on a diverse set of design
problems, for which well-documented designs exist.
We discuss our choice of problems in section 3.0.

4. Evaluate how well we have addressed our research
questions in each of these exercises. We summarize
these results in the final section.

Example problems we have studied with this research
methodology include elevator systems, train systems, air
traffic control, libraries, power plant control, e-mail
systems, and (most recently) meeting management
systems. Of the many research questions we tackled in
these exercises, we discuss two in this paper:

1. Is CSD sufficient to generate designs for realistic

problems?

Our studies indicate that a small set of transfor-
mations can construct a diverse range of existing
designs.

2. Can CSD be made tractable for realistic problems?

Our studies have helped identify the kinds of
domain-specific knowledge we would need to make
CSD tractable; however, little research has been
done to date on integrating this knowledge into the
design process.

While we have formalized some pieces of CSD, and
automated still smaller pieces, we view our work to date as
only a feasibility study. This paper reports on this study,
and concludes with a future work section in which we
briefly summarize the principal research problems we see
remaining.

1.3: The composite design approach
The starting point for CSD is an initial specification

describing system-wide goals (constraints), e.g., “move
passengers to their destinations”, and capabilities of the
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Aesthetic impacts

Insignificant: The proposed improvement would create
visual characteristics similar to those that currently exist in
the landscape.

Low: The improvement would introduce additional visual
characteristics into the landscape that would be evident but
would not necessarily attract attention.

Moderate: The improvement would introduce visual char-
acteristics that would be noticeably different from existing
visual elements.

High: The improvement would visually dominate the land-
scape and would cause substantial change in the visual
character of the landscape.

School bus safety indicators
1. # of school bus crossings

2. # of students on the bus during crossing

3. # Train operations during crossing times

4. % of crossings by buses at-grade

5. # Historical Bridge/Bus Incidents

6. Alternative route delay

7. # High hazard locations on alternative routes

In addition, the specification process of large-scale
composite systems must consider the transition impact
from standards which may exist in the given domain.
Agents, whether software, hardware, or human, must be
programmed, designed, or trained to carry out a given set
of responsibilities. In a system where a large group of
agents have similar responsibilities, it is typically costly to
alter these responsibilities. In the rail-highway crossing, for
instance, we cannot easily change the protocol by which
cars cross railroad tracks “at-grade” (on the same level as
the track), even if our new protocol would be a major
improvement. The cost of training all potential agents (the
drivers) of their new responsibilities is likely to be
prohibitive. Even altering the format or behavior of the
lights, gates, and gongs at crossings would probably entail
unreasonable expense in the short term, since it would
require selecting custom hardware and software over the
cheaper, mass-produced equipment available to support the
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standard design. At present, few requirements engineering
models attempt to evaluate transition impacts when
examining a system.

4: Summary and future work

We return to our state-based search perspective to
discuss the results of our study of CSD. There are two
search components to consider: 1) the design operators that
construct new states, and 2), the evaluation heuristics that
guide the search to acceptable solutions (composite system
specifications). Our design operators take the form of
transformations on goals and agents. We have been able to
produce a small number of powerful transformations that
apply across the transportation problems that we have
studied, and which could serve as the basis of an interactive
design assistant. These transformations are interactive
because we lack the formal analytic models (e.g., theorem
provers) to guarantee the responsibility-assignment
operation of CSD. We have partially plugged this analysis
gap with tools like OPIE and the RG tool. We also continue
to work on automating our transformations, gradually
making them less dependent on human intervention.

1t is not surprising that evaluation heuristics are crucial
to making composite design search tractable, and that
integrating these heuristics into the search appears to be a
more difficult problem than defining transformations
which generate the search space. On the positive side, we
have found numerous formal and informal models for
evaluation in the domains we have studied. By studying
small but realistic composite system problems, we have
also begun to identify some important types of evaluation -
- brownfield and greenfield -- that these models perform,
and the kinds of knowledge needed for these model types.

On the negative side, there has been little work in the
requirements and specification field to address the issues of
integrating greenfield and brownfield models into the
design process. One immediate gain would be to integrate
existing evaluation models into a tool based on CSD. This
is a task we have taken on in a tool we call Critter [9]. Our
initial goal is to informally catalog the type of models
discussed in section 4. Of course, the actual integration of
these models into an automated search-based design tool is
a difficult task, indeed - it requires mapping between
multiple ontologies at various levels of formalism. While
Farley&Lin have shown that this is possible in non-
composite domains [5], we believe much hard work lies
ahead to scale their results up.

5: Acknowledgments

Feather has been supported in part by Defense
Advanced Rescarch Projects Agency grant No, NCC-2-




pre-existing agents of the system, e.g., “an elevator can
move to an adjacent floor; a passenger at a floor can enter
an open-doored elevator at that same floor”. These amount
to the functional requirements of the system.

The design process proceeds by incrementally assigning
goals as the responsibility of subsets of agents: only those
agents responsible for a goal are expected to limit their own
behavior to ensure satisfaction of that goal. For example, if
the elevator system alone is responsible for keeping
passengers from falling down elevator shafts, then the
elevator must keep doors closed when necessary rather
than rely upon passengers to limit their choice of when to
walk through an open doorway. Different responsibility
assignments lead to radically different systems. For
instance, express elevators, scheduled elevators, reserved
elevators, prison elevators, freight elevators, etc., all can be
generated by exploring alternative  responsibility
assignments.

During the course of design, the interaction between
agents - communication and control - is established. Such
interactions may necessitate the introduction of, say,
communication media, protocols for communication, and
even further agents to facilitate communication.The
introduction of these is motivated and rationalized in terms
of the overall design process.

This design process ends when all goals have been
subdivided and assigned as the responsibility of individual
agents, at which point those agents can be independently
implemented, assured that their combination will achieve
the system-wide goals of the composite system to which
they belong. In effect, the system goals have been
“compiled out” of the global specification into the
individual agent specifications. It is possible that each
agent could be a smaller composite system, in which case
this design process may be recursively applied. For
instance, an entire elevator composite system may be a
single agent of a larger transportation composite system,
¢.g., within a train station or airport.

The end product of this process is (a) the specification
of individual agent behaviors, and (b) a history of the
development that rationalizes those behaviors in terms of
the system goals. Figure 1 (adapted from [9]) shows part of
the end product of CSD applied to the elevator problem.
Starting from a system goal (“move passengers to their
destinations”), we derive the responsibility of each
passenger agent to notify the elevator of its destination,
while the elevator receives the responsibility to move to
that destination when it is known. Along the way, we
derive the need for an interface component (implemented
by a button) which allows the passenger to communicate a
destination floor to the elevator. The system specification
which results specifies the individual behavior of elevator
and passenger agents, but these behaviors combine to give

a specified global behavior. The history of the design
process also partially captures alternative design paths,
which lead to radically different systems.

2: Searching the CSD space

We formalize the composite system design process by
treating it as a search through the space of possible designs.
The “states” of this space are designs or specifications; the
“operators” are transformations or “methods” [8] which
map from one design state to the next. Figure 1 shows part
of the state space for the elevator example discussed above.
A key question is: is the CSD approach sufficient to
construct a reasonably complete design space for realistic
problems?

Figure 1  Elevator design history (except).
Move to
destination
Move toward Stop at
destination destination
> .
indirect a}sslgn
access evator
- )
fCommunicaid | Move toward Stop at
1 destination | Jcommunica communicated
assign
Elevator
ommunicatelf Move toward Stop at
destination [|communicated| communicated
Elevato
assign
Passenger
ommunicatell Move toward top at
destination |}l communicated} communical
Passenger] Elevator |
}'é assign
Elevator
ommunicatg | Move toward top at
destination | | communicated}} communicated
Elevato
(floor Button)

We begin by brietly summarizing the components of the
states in the CSD search space, which we discuss in greater
detail in [9]. Each state has two components:



1. A behavior generator that computes all possible
interleavings of the behaviors of individual agents in
the system.For the purposes of this paper we assume
the behavior generator is written in a discrete event
language that can be viewed, alternatively, as a
subset of Gist [14] or a high level Petri Net [20],[10].

2. A set of constraints or goals which describe
restrictions on the behavior desired of the system.
The goal/constraint language is a form of temporal
logic, roughly similar to that of that of the ERAE
language [4] and of the distributed-action logic of
(31

As an example, Figure 2 shows part of the initial state

for a train system control problem. To summarize, the part
of the behavior generator shown indicates that trains can
enter the system, and can (non-deterministically) move
among the adjacent locations (blocks) of the train system,
The goal shown under “system goals” is a safety constraint:
two trains should never occupy the same block.

Figure 2 Excerpt of train example specification.

Behavior generator (excerpt)

| enter(f)  Train(t) start(t,b)  move(t,bl, b2)

o - e e e e e e e e e e -

System goals (excerpt)

ProtectTrains: never Train(t1) & Train(t2) &
Located(t1, 11) & Located(t2, 11)

A solution state for this search process is a specification
where all behaviors produced by the behavior generator
meet the system goals. In such designs, we have
successfully pushed the goals into the individual agent
specifications. Our approach to detecting solution states is
by counterexample: We attempt to show that a given state
is not a solution by exhibiting a sequence of events
produced by the behavior generator which violates one or
more system goals. If such a counterexample can be found,
we attempt to identify the deficiency in the specification
which produced it, and apply design operators to repair the
deficiency, (hopefully) moving closer to a solution.

To produce counterexamples from specifications, we

have built two analysis tools!;

1. We see a continuing need for both tools: OPIE provides effi-
ciency through goal-directed search and abstract planning; the

RG tool can be costly to run, but provides more powerful forms
of analysis.

1. A planner or scenario generator called OPIE [1].
OPIE can be used in two ways: 1) to disprove a
constraint by producing a disallowed behavior (i.e.,
counter-planning), and 2) to prove an existence goal,
e.g., there exists at least one behavior that satisfies
some predicate.

2. A reachability-graph (RG) tool. The tool first
produces a reachability graph from a static analysis
of the generative part, and then allows queries about
reachable states. As with OPIE, these queries can be
used to disprove a constraint or prove existence
goals. However, unlike OPIE, the graph can be used,
in conjunction with omega values, to disprove
temporal goals such as “trains will eventually reach
their destination”.

As an example of a disproof that either tool could
produce, but which we present in OPIE style for
readability, consider the specification of Figure 2. Note that
Figure 2 is a starting specification. It specifies the
environment in which we will design a train system, but
does not yet specify any of the agents we will need to meet
the goals. In [9], we follow the elaboration of this naive
model into its final, complex, composite form.

OPIE is called to disprove the specification, given
certain initial conditions:

(U): Disprove ProtectTrains in SYS0 given

Block(bl) & Block(b2) & Adjacent(bl, b2)

(0):The goal ProtectTrains in SYSO is violated by

scenario S1:

1. given Block (b1)

2. given Block (b2)

3. given Adjacent(bl, b2)

4. enter => Train(t1)

5. start(t1, b1) => Location(t1, b1)

6. move(Location(tl, bl), b2) &

Adjacent(b1, b2) => Location(tl, b2)

7. enter => Train(t2)

8. start(12, b1) => Location(12, b1)

9. move(Location(t2, b1), b2) &

Adjacent(b1, b2) => Location(t2, b2)

Violation: ProtectTrains in SYSO

‘We might apply several design operators or methods to
address this negative scenario. We could, for example,
introduce a new agent (an engineer, for instance) with
responsibility for the ProtectTrains goal. However, we
could also modify the environment (such as the adjacency
relation on blocks), or even the ProtectTrains goal itself.
This highlights an important difference between our CSD
approach and that of Feather’s original CSD [6]. In
particular, Feather was concerned with specification
implementation - given the correct set of goals and the
correct set of agents, find a division of responsibility




between them which maintains correctness. Thus, Feather
would support only one type of design action here: the
restriction of one or more existing agents’ behavior to
exclude the crash scenario. Our use of CSD, on the other
hand, is concerned with specification design: given an
initial set of goals and an existing environment, attempt to
assign responsibility. If this fails (because the initial model
was incomplete, because the system is unimplementable,
because it is too costly), modify the goals, the environment
(including agents), or both. The major ramification of this
is that we allow goal modifications (e.g., weakening a
goal), environment modifications (e.g., change the existing
infrastructure, create new agents) as well as responsibility
assignment. Feather takes up some of these broader
concerns in [7].

2.1: Planes, trains and automobiles

We have attempted to build a design space constructor
based on the CSD model. The approach we have taken is to
use transformations as design operators, i.e., as the actions
that produce new states/specifications in our state-based
search model. Our goal was to define a tractable set of
transformations that take goals and behavior generator as
input, and produce restricted agent actions as output (the
essence of responsibility assignment). We expected these
transformations to be interactive, relying on the human
specifier to do the complex reasoning sometimes necessary
to determine agent action and control. Our success criteria
involves a comparison with other interactive, assistant-
based design systems (e.g., [8], [16]): if we could obtain the
same mixture of human/machine interaction as these
systems, we would judge our results as a success.

To test our ideas, we looked at several domains, First,
we attempted to redesign Feather’s elevator system (as
reported in [6}) using a transformational approach. The
result, as discussed in [9], was that we were able to rederive
the elevator with a relatively small number of
transformations.

Our other major effort has been to work our way
towards a CSD model of Air Traffic Control (ATC).
Preliminary to this, we have studied several simpler
problems: traffic intersections as a CSD problem; rail-
highway crossings as a CSD problem; train/subway control
as a CSD problem. Our general approach has been to
rationally reconstruct problems from the real world, i.e., we
attempted reconstruct systems that exist now or existed in
the past.

We have chosen these example problems for several
reasons: 1) each has some of the same multi-agent protocol
problems as the more complex ATC composite system, but
without the attendant jargon and plethora of details, 2) train
failures (like ATC failures) are well documented {17], 3)
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evaluation functions have the same complex nature, and 4)
transportation systems, in general, share a property that is
endemic to many other real world composite systems - any
new system design must work its way into the existing

infrastructure (i.e., a revolutionary approachl is not a
practical specification development philosophy in most
composite system domains). The last two points,
evaluation functions and the need to fit a new design into
an elaborate existing infrastructure, is taken up in section 4.

2.2: Transformation examples

We could best illustrate our results from these design
studies by following several designs through in detail,
pointing out how a small number of transformations were

used over and over?. However, the limited space in this
paper will not allow us to do that. Instead, we will briefly
describe several of the key transformations used repeatedly
in the designs we have produced.

Brinkmanship. This is a standard constraint satisfaction
technique. It matches on a conjunctive system constraint,
and identifies the brink, i.e., the actions that, if allowed to
happen, will push the constraint over the edge. As an
example, suppose we have the following constraint taken
from figure 3:

never; train(Tl) & train(T2) & locat-

ed(Tl, L1) & located(T2, L1)

The effect of the brinkmanship transformation here
would be 1) to identify actions that change a train’s
location (e.g., a move action), 2) to add a control
component (¢.g., make train movement a controlled
action), and 3) to set up a sub-task to assign an agent to be
the controller®. Thus, brinkmanship sets up a goal for
subsequent responsibility assignment. Looking at
Feather’s original development of the elevator, one can see
that much of the work exactly this type of goal “jittering”
process. For example, Feather introduces a goal/constraint
that a passenger must not be in an elevator moving the
‘wrong way’. Application of brinkmanship transforms this
to a control problem: prevent the passenger’s entry into the

1. Revolutionary = design from scratch (also known as green-
field). Evolutionary = work a design in to an existing infrastruc-
ture, e.g., existing physical structures, existing laws, existing
standards, existing work practices, etc. (also known as brown-
field).

2. This is exactly the style used in [9] - a lengthy composite sys-
tem specification design is presented along with the transforma-
tions employed.

3. Clearly there are other strategies/transformations that are pos-
sible, e.g., disallow two trains in the system at the same time,
make the set of locations of two trains mutually exclusive (e.g.,
provide two sets of disjoint tracks). These, along with the brink-
manship strategy, are encoded in domain-independent terms.



elevator. Once this goal-jittering step is carried out, control
(responsibility) can be assigned to an agent.

Spatial-split. This introduces a standard, multi-agent
problem solving protocol. It breaks goal responsibility into
two spatially-disjoint pieces‘. A separate agent is assigned
to each piece, with responsibility shifting from one agent to
the next. Looking back at the brinkmanship problem in the
train example, there are actually two actions that we must
worry about: trains already under control of the rail line
system moving into the same location, and trains entering
control of the rail line system (say, from a holding yard).
This eventually leads to two actions to control. The spatial-
split transformation would suggest that responsibility be
split with one agent (i.e., a dispatcher) assigned to entry or
“train-in-yard” and a second agent (i.e., an engineer)
assigned to movement or “train on line™2. As a side-note,
there is a drawback that goes along with most of the split-
responsibility transformations - a clear handoff protocol
must be agreed upon among agents, and inter-agent
communication must be reliable. Looking at
documentation of train crashes, one finds an alarming rate
of train accidents caused by handoff failures [17].

Indirect access. This introduces a standard, multi-agent
problem solving protocol, which calls on an agent A to
signal another agent B as to the state S of the system.
Typically, S is something that B must know to act
responsibly, but B does not have direct access to S. In these
case, A is asked (given the responsibility) to sense $3 and
pass the information along to B. Such inter-agent
communication is ubiquitous in transportation systems,
e.g., elevators letting passengers know what direction they
are heading, station operators signalling trains when the
track ahead is clear, air traffic controllers warning a plane
that its landing gear has not properly deployed.

Responsibility accumulation. We may assign multiple
responsibilities to the same agent. The - transformation
action is to merge in new responsibilities to those already
existing in an agent. The motivation for this transformation
is obvious when looking at more complex systems: agents
typically play multiple-roles. For instance, train engineers
share responsibility for both train progress and train safety
goals. Of course, that there is the potential for conflict here

1. Non-spatial splits are also possible, e.g., split by property, split
by time, etc.

2. We also have a single-assignment transformation that would
make a single agent responsible for the entire constraint, i.e.,
control of both actions.

3. Variations exist where A simply “knows” S - there is no need
for a separate sensing operation. For example, a passenger A
knows its destination; most elevator systems give A the responsi-
bility of providing that information to the elevator B so it can
carry out its responsibility of getting the passenger to their desti-
nations.
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is well documented in case studies of train crashes [17]. In
general, responsibility overloading-achieves cost savings at
the expense of decreased reliability.

The results of our experiments were positive - we were
able to identify a set of domain-independent
transformations that sufficed to construct a number of real-
world designs in each of several transportation domains. At
the heart of this set lay a small core of transformations that
account for the vast majority of design steps - this core
comprises the transformations that we described above.
Beyond this core set, we identified transformations that are
needed to add components to the design that address agent
reliability and motivation issues; the interested reader is
referred to [9] for 2 more thorough discussion.

3: Evaluating composite designs

We argued in the last section that a relatively small
number of domain-independent transformations can
account for an interesting class of composite system design
problems. Thus, if a problem from any domain can be
viewed in a composite system light, our  domain-
independent transformations could construct-the space of
designs which covers that problem. It does not follow,
however, that we have no need of domain knowledge in
designing real systems. Viewing CSD as a search process,
we need a form of “heuristic function” which can evaluate
the designs in the search space and select those which will
lead to implementable, reliable, safe,  cost-effective
systems.

As an example of the kind of evaluation problem which
arises in CSD, reconsider the ProtectTrains constraint in
figure 3. We could (and did) use our transformations to
produce the following two alternative responsibility
assignments4:

1. Assign ProtectTrains to dispatchers and engineers.

2. Assign ProtectTrains to dispatchers, engineers, and

station operators (who controlled track-clear
signals).

Both of these showed up in actual train management
systems. The first describes pre-1850 train management. It
relied on clever scheduling and line-of-sight by engineers
to avoid crashes. The second describes most post-1850
train management systems, which employ the notion of
protected blocks of track. This is the same basic design that
is used today, with computers replacing or augmentmg the
human agents of the pre-computer era.

Given these two choices 140 years ago, which would we
have made? The first leads to a large number of accidents.
When the second was introduced, a dramatic drop in

4. Of course, we could also generate all other combinations pos-
sible.




accidents ensued. Hence, the second seems the best choice.
However, the first remained in place long after 1850 on
some lines - it appears that the expense of erecting stations,
signals and telegraph lines along with paying the station
operators outweighed the cost of accidents. In summary,
domain-dependent measures of cost and safety are needed
to choose among the alternatives generated by domain-
independent transformations.

In this section we look at the form evaluation knowledge
takes in the transportation problems that we have studied.

In reviewing the literature on our example domains, we -

have identified several classes of domain-specific
knowledge needed to make CSD tractable. However, we
also note a number of problems integrating this knowledge
into CSD which are not addressed by requirements
engineering research to date.

3.1: Revolutionary (greenfield) models

Each domain has a collection of specific metrics and
models to evaluate a specified component in isolation, i.e.,
as a greenfield system. Figure 3 gives a collection of these
for the evaluation of passenger rail system protocols and
layouts from [15] [18].

They include:

* Analytic models for estimating capacity of a rail line

under a given protocol.

» Statistical models to predict accidents at crossings

with different protocols and signals.

» Guidelines for estimating station traffic using

embedded transportation systems.

[19] and [12] discuss integration of similar
“nonfunctional requirements” into the design of VLSI and
algorithms, respectively. We could apply some of the more
formal models to the specification directly. For the less
formal models, or those which have highly specialized
inputs, it will be necessary to rely on a domain expert to
map from the artifact’s abstract specification into the terms
required by a given model. In addition, many domain-
specific evaluation models make assumptions which
constrain the implementation of specification constructs. A
model for the operating cost of a train signal, for instance,
would necessarily identify the technology used to
implement that signal. Thus, it remains an open question
how and when to apply a given evaluation model in the
CSD process.

3.2: Evolutionary (brownfield) models

In the domains we have studied, brownfield constraints
prune out many otherwise plausible designs. A principle
brownfield constraint is the operating impact the artifact
may have on its environment. Suppose that in specifying an
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elevator system we apply a “split” transformation which
divides responsibility among passengers and elevators
according to the distance they wish to travel. Passengers
will be solely responsible for reaching their destination (via
stairs) when they want to go up or down only one floor,
while elevators and passengers will be jointly responsible
when the distance to travel is greater. Naive application of
greenfield metrics for the elevator controller specification,
such as cost, performance, and maintainability, might make
this seem to be a superior design. This protocol, however,
is ruled out for new elevators by local, state, and federal
requirements for handicapped access [2].

Figure 3 Evaluating rail and crossing designs.

[Capacity of two-block permissive signal-ling protocol

capacity = 1/h
h =Kv0/d + pL/v0

Accident prediction factors (excerpt)

Category  Constant. Exposure

Walkway ~ 0.002268 ((c * t* 0.2)/0.2)033%
Flashing 0.003646 ((c * t* 0.2)/0.2)02953
Gates 0.001088 ((c * t*0.2)/0.2)03116

Pedestrian conveyor performance

System Cap. Width Speed
Walkway 600 (per ft.) 250
1500 (per ft.) crush flow
Escalator 3750 2 90
5025 2 120
Moving walk 3600 2 120
Stairs  1000-1200 (per ft.) crush flow

Figure 4 shows a selection of models from {18] for
evaluating the impact of rail-highway crossing alteratives
on their environment. These include graphical models for
computing carbon monoxide emissions, guidelines for
evaluating aesthetic impacts, and checklists of special
concerns such as emergency vehicle and school bus
movements. In general, to genuinely evaluate specification
alternatives, we have to consider the written codes and
guidelines which have developed in the domain to limit the
disruption a system creates in its environment.



Figure 4 Operating impact models.
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Aesthetic impacts
Insignificant: The proposed improvement would create

visual characteristics similar to those that currently exist in
the landscape.

Low: The improvement would introduce additional visual
characteristics into the landscape that would be evident but
would not necessarily attract attention.

Moderate: The improvement would introduce visual char-
acteristics that would be noticeably different from existing
visual elements.

High: The improvement would visually dominate the land-
scape and would cause substantial change in the visual
character of the landscape.

School bus safety indicators

1. # of school bus crossings

2. # of students on the bus during crossing

3. # Train operations during crossing times

4. % of crossings by buses at-grade

5. # Historical Bridge/Bus Incidents

6. Alternative route delay

7. # High hazard locations on alternative routes

In addition, the specitication process of large-scale
composite systems must consider the transition impact
from standards which may exist in the given domain.
Agents, whether software, hardware, or human, must be
programmed, designed, or trained to carry out a given set
of responsibilities. In a system where a large group of
agents have similar responsibilities, it is typically costly to
alter these responsibilities. In the rail-highway crossing, for
instance, we cannot easily change the protocol by which
cars cross railroad tracks “at-grade” (on the same level as
the track), even if our new protocol would be a major
improvement. The cost of training all potential agents (the
drivers) of their new responsibilities is likely to be
prohibitive. Even altering the format or behavior of the
lights, gates, and gongs at crossings would probably entail
unreasonable expense in the short term, since it would
require selecting custom hardware and software over the
cheaper, mass-produced equipment available to support the
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standard design. At present, few requirements engineering
models attempt to evaluate transition impacts when
examining a system.

4: Summary and future work

We return to our state-based search perspective to
discuss the results of our study of CSD. There are two
search components to consider: 1) the design operators that
construct new states, and 2), the evaluation heuristics that
guide the search to acceptable solutions (composite system
specifications). Our design operators take the form of
transformations on goals and agents. We have been able to
produce a small number of powerful transformations that
apply across the transportation problems that we have
studied, and which could serve as the basis of an interactive
design assistant. These transformations are interactive
because we lack the formal analytic models (e.g., theorem
provers) to guarantee the responsibility-assignment
operation of CSD. We have partially plugged this analysis
gap with tools like OPIE and the RG tool. We also continue
to work on automating our transformations, gradually
making them less dependent on human intervention.

It is not surprising that evaluation heuristics are crucial
to making composite design search tractable, and that
integrating these heuristics into the search appears to be a
more difficult problem than defining transformations
which generate the search space. On the positive side, we
have found numerous formal and informal models for
evaluation in the domains we have studied. By studying
small but realistic composite system problems, we have
also begun to identify some important types of evaluation -
- brownfield and greenfield -- that these models perform,
and the kinds of knowledge needed for these model types.

On the negative side, there has been little work in the
requirements and specification field to address the issues of
integrating greenfield and brownfield models into the
design process. One immediate gain would be to integrate
existing evaluation models into a tool based on CSD. This
is a task we have taken on in a tool we call Critter [9]. Our
initial goal is to informally catalog the type of models
discussed in section 4. Of course, the actual integration of
these models into an automated search-based design tool is
a difficult task, indeed - it requires mapping between
multiple ontologies at various levels of formalism. While
Farley&Liu have shown that this is possible in- non-
composite domains [5], we believe much hard work lies
ahead to scale their results up.
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